### 3.3 Derivatives of Composite Functions: The Chain Rule

In this section we want to find the derivative of a composite function $f(g(x))$ where $f(x)$ and $g(x)$ are two differentiable functions.

## Theorem 3.3.1

If $f$ and $g$ are differentiable then $f(g(x))$ is differentiable with derivative given by the formula

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

This result is known as the chain rule. Thus, the derivative of $f(g(x))$ is the derivative of $f(x)$ evaluated at $g(x)$ times the derivative of $g(x)$.

## Proof.

By the definition of the derivative we have

$$
\frac{d}{d x} f(g(x))=\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h} .
$$

Since $g$ is differentiable at $x$, letting

$$
v=\frac{g(x+h)-g(x)}{h}-g^{\prime}(x)
$$

we find

$$
g(x+h)=g(x)+\left(v+g^{\prime}(x)\right) h
$$

with $\lim _{h \rightarrow 0} v=0$. Similarly, we can write

$$
f(y+k)=f(y)+\left(w+f^{\prime}(y)\right) k
$$

with $\lim _{k \rightarrow 0} w=0$. In particular, letting $y=g(x)$ and $k=\left(v+g^{\prime}(x)\right) h$ we find

$$
f\left(g(x)+\left(v+g^{\prime}(x)\right) h\right)=f(g(x))+\left(w+f^{\prime}(g(x))\right)\left(v+g^{\prime}(x)\right) h .
$$

Hence,

$$
\begin{aligned}
f(g(x+h))-f(g(x)) & =f\left(g(x)+\left(v+g^{\prime}(x)\right) h\right)-f(g(x)) \\
& =f(g(x))+\left(w+f^{\prime}(g(x))\right)\left(v+g^{\prime}(x)\right) h-f(g(x)) \\
& =\left(w+f^{\prime}(g(x))\right)\left(v+g^{\prime}(x)\right) h
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\frac{d}{d x} f(g(x)) & =\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h} \\
& =\lim _{h \rightarrow 0}\left(w+f^{\prime}(g(x))\right)\left(v+g^{\prime}(x)\right) \\
& =f^{\prime}(g(x)) g^{\prime}(x)
\end{aligned}
$$

This completes a proof of the theorem

## Example 3.3.1

Find the derivative of $y=\left(4 x^{2}+1\right)^{7}$.

## Solution.

First note that $y=f(g(x))$ where $f(x)=x^{7}$ and $g(x)=4 x^{2}+1$. Thus, $f^{\prime}(x)=7 x^{6}, f^{\prime}(g(x))=7\left(4 x^{2}+1\right)^{6}$ and $g^{\prime}(x)=8 x$. So according to the chain rule, $y^{\prime}=7\left(4 x^{2}+1\right)^{6}(8 x)=56 x\left(4 x^{2}+1\right)^{6}$

## Example 3.3.2

Prove the power rule for rational exponents.

## Solution.

Suppose that $y=x^{\frac{p}{q}}$, where $p$ and $q$ are integers with $q>0$. Take the $q^{\text {th }}$ power of both sides to obtain $y^{q}=x^{p}$. Differentiate both sides with respect to $x$ to obtain $q y^{q-1} y^{\prime}=p x^{p-1}$. Thus,

$$
y^{\prime}=\frac{p}{q} \frac{x^{p-1}}{x^{\frac{p(q-1)}{q}}}=\frac{p}{q} x^{\frac{p}{q}-1} .
$$

Note that we are assuming that $x$ is chosen in such a way that $x^{\frac{p}{q}}$ is defined

## Example 3.3.3

Show that $\frac{d}{d x} x^{n}=n x^{n-1}$ for $x>0$ and $n$ is any real number.

## Solution.

Since $x^{n}=e^{n \ln x}$ then

$$
\frac{d}{d x} x^{n}=\frac{d}{d x} e^{n \ln x}=e^{n \ln x} \cdot \frac{n}{x}=n x^{n-1} .
$$

We end this section by finding the derivative of $f(x)=\ln x$ using the chain rule. Write $y=\ln x$. Then $e^{y}=x$. Differentiate both sides with respect to $x$ to obtain

$$
e^{y} \cdot y^{\prime}=1
$$

Solving for $y^{\prime}$ we find

$$
y^{\prime}=\frac{1}{e^{y}}=\frac{1}{x} .
$$

